Characterization of Soil Microbial Biomass Carbon and Nitrogen in Four Forest Types of Shushan Urban Forest Park

Author:

Wang Mimi12,Cui Jun3,Liu Haiyang2,Xu Xiaoniu1ORCID

Affiliation:

1. School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei 230036, China

2. School of Architecture & Urban Planning, Anhui Jianzhu University, Hefei 230009, China

3. College of Life and Environmental Science, Huangshan University, Huangshan 245061, China

Abstract

This study aimed to investigate the role of plantation forests and natural secondary forests in controlling soil physicochemical properties and microbial biomass in urban forest ecosystems. (1) Background: Urban forests provide numerous benefits to urban ecosystems, but the interaction between forest stands and soil properties in controlling soil microbial biomass carbon (MBC) and nitrogen (MBN) remains poorly understood. The objective of this study was to examine how different forest types (plantation forests and natural secondary forests) influence soil physicochemical properties and microbial biomass in urban forest ecosystems. (2) Methods: We conducted a study in Shushan Urban Forest Park, Hefei, China, utilizing redundancy analysis and linear regression analyses to identify key environmental factors affecting the microbial distribution and significant correlations between soil properties and microbial biomass. (3) Results: Plantation forests generally had lower pH, water content, and organic carbon and nutrient content than natural forests. Natural forests exhibited higher microbial biomass and nutrient cycling capacity. Soil depth and forest type have significant effects on soil properties and microbial biomass in both growing and dormant seasons, with practical implications for forest management and soil conservation in similar ecosystems. Soil water content (SWC), pH, total nitrogen (TN), total phosphorus (TP), and soil organic carbon (SOC) were identified as key factors affecting microbial carbon and nitrogen distribution during both growing and dormant seasons. Our study provides important insights into the role of forest stands and soil physicochemical properties in controlling soil microbial biomass in urban forest ecosystems. Effective forest management strategies should be developed to promote sustainable and resilient forest ecosystems. Future research should investigate the underlying mechanisms driving these relationships and focus on promoting sustainable and resilient urban forest ecosystems.

Funder

Natural Science Research Project of Anhui Educational Committee

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Forestry

Reference56 articles.

1. An analysis of urban forest management plans in Canada: Implications for urban forest management;Duinker;Landsc. Urban Plan.,2013

2. Forecasting urban forest ecosystem structure, function, and vulnerability;Steenberg;Environ. Manag.,2016

3. Forecasting urban forest ecosystem structure, function, and vulnerability;Duinker;Urban For. Urban Green.,2015

4. Promoting climate-driven forest migration through large-scale urban afforestation;Han;Landsc. Urban Plan.,2021

5. Effects of afforestation on carbon sequestration and global climate change: A review;Zhang;For. Ecol. Manag.,2021

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3