Identification of sesquiterpene synthase genes in the genome of Aquilaria sinensis and characterization of an α-humulene synthase

Author:

Ran Jiadong,Li Yuan,Wen Xin,Geng Xin,Si Xupeng,Zhang Liping,Ma Yimian,Zhang Zheng

Abstract

AbstractSesquiterpenes are the major pharmacodynamic components of agarwood, a precious traditional Chinese medicine obtained from the resinous portions of Aquilaria sinensis trees that form in response to environmental stressors. To characterize the sesquiterpene synthases responsible for sesquiterpene production in A. sinensis, a bioinformatics analysis of the genome of A. sinensis identified six new terpene synthase genes, and 16 sesquiterpene synthase genes were identified as type TPS-a in a phylogenetic analysis. The expression patterns for eight of the sesquiterpene synthase genes after treatment with various hormones or hydrogen peroxide were analyzed by real-time quantitative PCR. The results suggest that 100 μM methyl jasmonate, ethephon, ( ±)-abscisic acid or hydrogen peroxide could be effective short-term effectors to increase the expression of sesquiterpene synthase genes, while 1 mM methyl salicylate may have long-term effects on increasing the expression of specific sesquiterpene synthase genes (e.g., As-SesTPS, AsVS, AsTPS12 and AsTPS29). The expression changes in these genes under various conditions reflected their specific roles during abiotic or biotic stresses. Heterologous expression of a novel A. sinensis sesquiterpene synthase gene, AsTPS2, in Escherichia coli produced a major humulene product, so AsTPS2 is renamed AsHS1. AsHS1 is different from ASS1, AsSesTPS, and AsVS, for mainly producing α-humulene. Based on the predicted space conformation of the AsHS1 model, the small ligand molecule may bind to the free amino acid by hydrogen bonding for the catalytic function of the enzyme, while the substrate farnesyl diphosphate (FPP) probably binds to the free amino acid on one side of the RxR motif. Arg450, Asp453, Asp454, Thr457, and Glu461 from the NSE/DTE motif and D307 and D311 from the DDxxD motif were found to form a polar interaction with two Mg2+ clusters by docking. The Mg2+-bound DDxxD and NSE/DTE motifs and the free RXR motif are jointly directed into the catalytic pocket of AsHS1. Comparison of the tertiary structural models of AsHS1 with ASS1 showed that they differed in structures in several positions, such as surrounding the secondary catalytic pocket, which may lead to differences in catalytic products. Based on the results, biosynthetic pathways for specific sesquiterpenes such as α-humulene in A. sinensis are proposed. This study provides novel insights into the functions of the sesquiterpene synthases of A. sinensis and enriches knowledge on agarwood formation.

Publisher

Springer Science and Business Media LLC

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3