Author:
Yu Lei,Liang Yuliang,Zhang Yizhuo,Cao Jun
Abstract
Abstract
This study used near-infrared (NIR) spectroscopy to predict mechanical properties of wood. NIR spectra were collected in wavelengths 900–1700 nm, and spectra averaged by radial and tangential surface spectra were used to establish a partial least square (PLS) model based on correlation local embedding (CLE). Mongolian oak (Quercus mongolica Fisch. ex Ledeb.) was used to test the effectiveness of the model. The cross-validation method was used to verify the robustness of the CLE–PLS model. Ninety samples were tested as the calibration set and forty-five as the validation set. The results show that the prediction coefficient of determination ($$R_{p}^{2}$$Rp2) is 0.80 for MOR, and 0.78 for MOE. The ratio of performance to deviation is 2.23 for MOR and 2.15 for MOE.
Publisher
Springer Science and Business Media LLC
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献