Spatially differentiated changes in regional climate and underlying drivers in southwestern China

Author:

Wang Meng,Jiang Chao,Sun Osbert Jianxin

Abstract

AbstractThe climate in Southwest China are predominantly under the influences of three contrasting climate systems, namely the East Asian monsoon, the South Asian monsoon, and the westerlies. However, it is unclear if the diversified climate systems, in combination with the complex terrain and varying vegetation types, would result in contrasting patterns of changes in climate across the region. Based on the CRU TS data for the period 1901−2017, we examined the spatiotemporal characteristics of the regional climate, and identified types of climate change patterns and drivers. Overall, the region experienced significant increases in annual mean temperature during 1901−2017, with occurrence of a significant turning point in 1954 for a more pronounced warming (0.16 °C/10 a). The annual precipitation fluctuated greatly over the study period without apparent trend, albeit the occurrence of a significant turning point in 1928 for a slight increase in the later period (1.19 mm/10 a). Spatially the multi-year averages of selective climate variables during 1901–2017 displayed a trend of decreases from southeast to northwest, but with increasing variability. We identified five major climate change types across the study region, including warmer (T+), drier (P), warmer-drier (T+P), warmer-wetter (T+P+), and no significant changes (NSC). The type T+P+ mainly occurred in the western parts over the plateau sub-frigid semiarid ecozone (77.0%) and the plateau sub-frigid semihumid ecozone (19.9%). The central parts of the region are characterized by the type T+, corresponding to six ecozones, including the mid-subtropical humid ecozone (33.1%), the plateau temperate humid-semihumid ecozone (28.8%), the plateau sub-rigid semihumid ecozone (9.5%), the southern subtropical humid ecozone (8.1%), the plateau sub-frigid arid ecozone (7.3%), and the plateau temperate semiarid ecozone (6.6%). No significant change in climate was detected for the eastern parts over the mid-subtropical humid ecozone (67.3%), the plateau temperate humid and semihumid ecozone (19.5%) and the plateau sub-frigid semihumid ecozone (8.8%). The types P and T+P together accounted for less than 5% of the entire study region, which predominantly occurred in central Yunnan-Guizhou Plateau and south of the southeastern Xizang, corresponding predominantly to the mid-subtropical humid ecozone. Across the region and within the zonal climate change types, vegetation and topography both played a significant role in determining the climate variability and magnitude of changes. Our results suggest that the southwestern China experienced intensified influences of the southeasterly monsoon and the southerly monsoon in the regional climate, while the westerly alpine influences subsided; topography and vegetation affected the magnitudes of the directional changes in climate at a local scale.

Publisher

Springer Science and Business Media LLC

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3