Overcoming the Curse of Dimensionality in the Numerical Approximation of Parabolic Partial Differential Equations with Gradient-Dependent Nonlinearities

Author:

Hutzenthaler Martin,Jentzen Arnulf,Kruse Thomas

Abstract

AbstractPartial differential equations (PDEs) are a fundamental tool in the modeling of many real-world phenomena. In a number of such real-world phenomena the PDEs under consideration contain gradient-dependent nonlinearities and are high-dimensional. Such high-dimensional nonlinear PDEs can in nearly all cases not be solved explicitly, and it is one of the most challenging tasks in applied mathematics to solve high-dimensional nonlinear PDEs approximately. It is especially very challenging to design approximation algorithms for nonlinear PDEs for which one can rigorously prove that they do overcome the so-called curse of dimensionality in the sense that the number of computational operations of the approximation algorithm needed to achieve an approximation precision of size $${\varepsilon }> 0$$ ε > 0 grows at most polynomially in both the PDE dimension $$d \in \mathbb {N}$$ d N and the reciprocal of the prescribed approximation accuracy $${\varepsilon }$$ ε . In particular, to the best of our knowledge there exists no approximation algorithm in the scientific literature which has been proven to overcome the curse of dimensionality in the case of a class of nonlinear PDEs with general time horizons and gradient-dependent nonlinearities. It is the key contribution of this article to overcome this difficulty. More specifically, it is the key contribution of this article (i) to propose a new full-history recursive multilevel Picard approximation algorithm for high-dimensional nonlinear heat equations with general time horizons and gradient-dependent nonlinearities and (ii) to rigorously prove that this full-history recursive multilevel Picard approximation algorithm does indeed overcome the curse of dimensionality in the case of such nonlinear heat equations with gradient-dependent nonlinearities.

Funder

Universität Duisburg-Essen

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Theory and Mathematics,Computational Mathematics,Analysis

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3