Overcoming the curse of dimensionality in the numerical approximation of Allen–Cahn partial differential equations via truncated full-history recursive multilevel Picard approximations

Author:

Beck Christian1,Hornung Fabian12,Hutzenthaler Martin3,Jentzen Arnulf14,Kruse Thomas5

Affiliation:

1. Department of Mathematics, ETH Zurich , Zürich , Switzerland

2. Faculty of Mathematics , Karlsruhe Institute of Technology , Karlsruhe , Germany

3. Faculty of Mathematics , University of Duisburg-Essen , Essen , Germany

4. Faculty of Mathematics and Computer Science , University of Münster , Münster , Germany

5. Institute of Mathematics , University of Gießen , Gießen , Germany

Abstract

Abstract One of the most challenging problems in applied mathematics is the approximate solution of nonlinear partial differential equations (PDEs) in high dimensions. Standard deterministic approximation methods like finite differences or finite elements suffer from the curse of dimensionality in the sense that the computational effort grows exponentially in the dimension. In this work we overcome this difficulty in the case of reaction–diffusion type PDEs with a locally Lipschitz continuous coervice nonlinearity (such as Allen–Cahn PDEs) by introducing and analyzing truncated variants of the recently introduced full-history recursive multilevel Picard approximation schemes.

Publisher

Walter de Gruyter GmbH

Subject

Computational Mathematics

Reference41 articles.

1. C. Beck, S. Becker, P. Cheridito, A. Jentzen, and A. Neufeld, Deep splitting method for parabolic PDEs, arXiv:1907.03452 (2019), 40 p.

2. C. Beck, S. Becker, P. Grohs, N. Jaafari, and A. Jentzen, Solving stochastic differential equations and Kolmogorov equations by means of deep learning, arXiv:1806.00421 (2018), 56 p.

3. C. Beck, W. E, and A. Jentzen, Machine learning approximation algorithms for high-dimensional fully nonlinear partial differential equations and second-order backward stochastic differential equations, J. Nonlinear Sci. 29 (2019), No. 4, 1563–1619.

4. C. Beck, L. Gonon, and A. Jentzen, Overcoming the curse of dimensionality in the numerical approximation of high-dimensional semilinear elliptic partial differential equations, arXiv:2003.00596 (2020), 50 p.

5. S. Becker, R. Braunwarth, M. Hutzenthaler, A. Jentzen, and P. von Wurstemberger, Numerical simulations for full history recursive multilevel Picard approximations for systems of high-dimensional partial differential equations, arXiv:2005.10206 (2020), 21 p. (to appear in Commun. Comput. Physics

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3