Author:
Di Pietro Daniele A.,Droniou Jérôme
Abstract
AbstractIn this paper, we present a novel arbitrary-order discrete de Rham (DDR) complex on general polyhedral meshes based on the decomposition of polynomial spaces into ranges of vector calculus operators and complements linked to the spaces in the Koszul complex. The DDR complex is fully discrete, meaning that both the spaces and discrete calculus operators are replaced by discrete counterparts, and satisfies suitable exactness properties depending on the topology of the domain. In conjunction with bespoke discrete counterparts of $$\text {L}^2$$
L
2
-products, it can be used to design schemes for partial differential equations that benefit from the exactness of the sequence but, unlike classical (e.g., Raviart–Thomas–Nédélec) finite elements, are nonconforming. We prove a complete panel of results for the analysis of such schemes: exactness properties, uniform Poincaré inequalities, as well as primal and adjoint consistency. We also show how this DDR complex enables the design of a numerical scheme for a magnetostatics problem, and use the aforementioned results to prove stability and optimal error estimates for this scheme.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Theory and Mathematics,Computational Mathematics,Analysis
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献