Spectral Engineering Via Complex Patterns of Circular Nano-Object Miniarrays: II. Concave Patterns Tunable by Integrated Lithography Realized by Circularly Polarized Light

Author:

Tóth Emese,Sipos Áron,Fekete Olivér A.,Csete MáriaORCID

Abstract

AbstractThe use of circularly polarized beams in interferometric illumination of colloid sphere monolayers enables the direct fabrication of rectangular patterns composed of circular nanohole miniarrays in metal films. This paper presents a study on the spectral and near-field effects of complex rectangular patterns consisted of a central nanoring and slightly rotated satellite nanocrescents in azimuthal orientations, which promote coupling between localized and propagating plasmons. To inspect the localized modes separately, we investigate the spectral responses and near-field phenomena of hexagonal patterns composed of uniform nanorings and nanocrescents, which can be fabricated by a single, homogeneous, circularly polarized beam incident perpendicularly and obliquely, respectively. To understand the interaction of localized and propagating modes, we analyze artificial rectangular patterns composed of a singlet nanoring, a singlet horizontal nanocrescent, and a quadrumer of four slightly rotated nanocrescents. The results demonstrate that on the rectangular pattern of a singlet horizontal nanocrescent the interacting C2 and C1 localized resonances in the C orientation ($$0^{\circ }$$ 0 azimuthal angle) and the U localized resonance coupled with propagating surface plasmon polaritons (SPPs) in the U orientation ($$90^{\circ }$$ 90 azimuthal angle) manifest themselves in similar split spectra. Moreover, split spectra appear due to the coupling of the azimuthal orientation independent localized resonance on the nanorings and the SPPs propagating on their rectangular pattern in the U orientation. The spectral response of the complex miniarray pattern can be precisely tuned by varying the geometrical parameters of the moderately interacting nanoholes and the pattern period. In appropriate configurations, the fluorescence of the dipolar emitters is enhanced, which has potential applications in bio-object detection.

Funder

Emberi Eroforràsok Minisztèriuma

Nemzeti Kutatàsi ès Technològiai Hivatal

University of Szeged

Publisher

Springer Science and Business Media LLC

Subject

Biochemistry,Biophysics,Biotechnology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3