Metamaterial properties of Babinet complementary complex structures

Author:

Tóth Emese,Bánhelyi Balázs,Fekete Olivér,Csete MáriaORCID

Abstract

AbstractSingle and multiple layers of sub-wavelength periodic Babinet complementary patterns composed of rounded nano-object miniarrays were investigated. In case of illumination with linearly and circularly polarized light the azimuthal orientation and handedness (in)dependence of (cross-polarized) copolarized transmitted signal components was proven for all types of patterns. Considerable (weak) asymmetric transmission was demonstrated in extended bands exclusively for both types of copolarized (cross-polarized) signals transmitted through single layer of convex miniarrays. Three-dimensional structures constructed with convex–concave–convex complex pattern-layers resulted in a negative index at the visible region boundary both for linearly and circularly polarized light illuminations. This is because dipolar modes on the convex nano-objects are synchronized with co-existent reversal dipoles on the concave nano-objects via interlayer coupling. Although during linearly polarized light illumination, the interlayer interaction decouples the localized and propagating modes excitable on the concave pattern in the 90° azimuthal orientation, the synchronization via tilted-rotating nanoring dipoles is almost perfect in the 0° azimuthal orientation. For circularly polarized light illumination, both the dispersion maps and the negative index phenomena synthesize the characteristics of the two orthogonal linearly polarized light illuminations. Important aspect is the appearance of a small/intermediate (large) time-averaged amplitude magnetic dipole due to the tilted (twisted) electric dipole on the concave nanoring, which less/more quickly turns (continuously rotates) with large/intermediate (small) out-of-plane tilting, when illumination is realized with linearly polarized light in the 90°/0° azimuthal orientation (with circularly polarized light). The location of the negative index can be predicted based on the copolarized transmittance signals computed for circularly polarized light illumination by using the linear base representation of Jones transmission matrix elements.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Metamaterial Properties of Layered Babinet Complementary Patterns;2023 Seventeenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials);2023-09-11

2. Broadband transparency of Babinet complementary metamaterials;Applied Physics Letters;2023-06-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3