Author:
Yang Yajie,Zhang Luning,Li Shibin,Wang Zhiming,Xu Jianhua,Yang Wenyao,Jiang Yadong
Abstract
Abstract
We report chemical vapor phase polymerization (VPP) deposition of poly(3,4-ethylenedioxythiophene) (PEDOT) and PEDOT/graphene on porous dielectric tantalum pentoxide (Ta2O5) surface as cathode films for solid tantalum electrolyte capacitors. The modified oxidant/oxidant-graphene films were first deposited on Ta2O5 by dip-coating, and VPP process was subsequently utilized to transfer oxidant/oxidant-graphene into PEDOT/PEDOT-graphene films. The SEM images showed PEDOT/PEDOT-graphene films was successfully constructed on porous Ta2O5 surface through VPP deposition, and a solid tantalum electrolyte capacitor with conducting polymer-graphene nano-composites as cathode films was constructed. The high conductivity nature of PEDOT-graphene leads to resistance decrease of cathode films and lower contact resistance between PEDOT/graphene and carbon paste. This nano-composite cathode films based capacitor showed ultralow equivalent series resistance (ESR) ca. 12Ω and exhibited excellent capacitance-frequency performance, which can keep 82% of initial capacitance at 500 KHz. The investigation on leakage current revealed that the device encapsulation process has no influence on capacitor leakage current, indicating the excellent mechanical strength of PEDOT/PEDOT-gaphene films. This high conductivity and mechanical strength of graphene-based polymer films shows promising future for electrode materials such as capacitors, organic solar cells and electrochemical energy storage devices.
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Surfaces, Coatings and Films,Electronic, Optical and Magnetic Materials
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献