Cohort splitting from plastic bet-hedging: insights from empirical and theoretical investigations in a wolf spider

Author:

Rádai ZoltánORCID

Abstract

AbstractBet-hedging strategies help organisms to decrease variance in their fitness in unpredictably changing environments, by which way lineage fitness can be maximized in the given environment. As one strategy, diversified bet-hedging helps to achieve that by increasing phenotypic variation in fitness-related traits. For example, in diversified tracking, parents may divide the developmental phenotypes of their offspring within broods, leading to cohort splitting among the progeny. Such diversification, though, should be probabilistic and sensitive to no external stimuli. However, it was recently highlighted that plasticity in response to environmental stimuli may be part of a more dynamic case of bet-hedging. Current understanding and empirical observations of such a plastic bet-hedging remain limited. Here I use a theoretical investigation relying on empirical grounds in a specific case of cohort splitting in the wolf spider Pardosa agrestis (Westring 1861). I investigated whether cohort splitting might be a bet-hedging strategy in females of P. agrestis, and whether it would be expected to be static or plastic bet-hedging. Results show that cohort splitting is likely a bet-hedging strategy in this species, by which females maximize their lineage fitness. Also, cohort splitting appears to arise from plastic bet-hedging, as in simulated populations where both static and plastic bet-hedging females occur, the latter have considerably higher geometric mean fitness. I discuss theoretical and empirical observations in light of the current theory, and draw predictions on specific aspects of this case of plastic bet-hedging.

Funder

ELKH Centre for Ecological Research

Publisher

Springer Science and Business Media LLC

Subject

Ecological Modelling,Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3