Abstract
AbstractThe European cherry fruit fly, Rhagoletis cerasi (Diptera: Tephritidae), is a univoltine species that overwinters at pupal stage. Under optimum overwintering conditions pupae will develop into adults the next spring. Shorter or longer than optimum chilling periods induce prolonged pupae dormancy. Pupae that enter prolonged dormancy due to a short chilling period exhibit high emergence rates after a second cycle of cold/warm periods. Adults found to be larger and less fecund compared to their counterparts from pupae with annual diapause. On the other hand, extreme long chilling periods at pupal stage results in high mortality rates. However, for one Greek population, a substantial number of adults emerged following prolonged chilling of pupae (ca. 18 consecutive months). In this study, we used three R. cerasi populations in order to address possible geographical variation in fitness cost of adults from pupae with prolonged dormancy. In addition, the fitness traits of these adults emerging after prolonged pupae chilling were compared with that of their counterparts from pupae with annual diapause or prolonged dormancy. Our results reveal no population-specific variation in fitness cost of adults from pupae with prolonged dormancy. Within a population, lifetime fecundity did not differ between adults emerged from pupae with prolonged dormancy and those emerged after prolonged pupae chilling. Adults emerged from pupae exposed to prolonged chilling suffer an additional reduction in adult longevity compared to adults from pupae with prolonged dormancy. Hence, fitness of R. cerasi adults is regulated by diapause regimes of pupae.
Publisher
Cambridge University Press (CUP)
Subject
Insect Science,Agronomy and Crop Science,General Medicine
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献