Comparison of low-contrast detectability between uniform and anatomically realistic phantoms—influences on CT image quality assessment

Author:

Conzelmann Juliane,Genske Ulrich,Emig Arthur,Scheel Michael,Hamm Bernd,Jahnke PaulORCID

Abstract

Abstract Objectives To evaluate the effects of anatomical phantom structure on task-based image quality assessment compared with a uniform phantom background. Methods Two neck phantom types of identical shape were investigated: a uniform type containing 10-mm lesions with 4, 9, 18, 30, and 38 HU contrast to the surrounding area and an anatomically realistic type containing lesions of the same size and location with 10, 18, 30, and 38 HU contrast. Phantom images were acquired at two dose levels (CTDIvol of 1.4 and 5.6 mGy) and reconstructed using filtered back projection (FBP) and adaptive iterative dose reduction 3D (AIDR 3D). Detection accuracy was evaluated by seven radiologists in a 4-alternative forced choice experiment. Results Anatomical phantom structure impaired lesion detection at all lesion contrasts (p < 0.01). Detectability in the anatomical phantom at 30 HU contrast was similar to 9 HU contrast in uniform images (91.1% vs. 89.5%). Detection accuracy decreased from 83.6% at 5.6 mGy to 55.4% at 1.4 mGy in uniform FBP images (p < 0.001), whereas AIDR 3D preserved detectability at 1.4 mGy (80.7% vs. 85% at 5.6 mGy, p = 0.375) and was superior to FBP (p < 0.001). In the assessment of anatomical images, superiority of AIDR 3D was not confirmed and dose reduction moderately affected detectability (74.6% vs. 68.2%, p = 0.027 for FBP and 81.1% vs. 73%, p = 0.018 for AIDR 3D). Conclusions A lesion contrast increase from 9 to 30 HU is necessary for similar detectability in anatomical and uniform neck phantom images. Anatomical phantom structure influences task-based assessment of iterative reconstruction and dose effects. Key Points • A lesion contrast increase from 9 to 30 HU is necessary for similar low-contrast detectability in anatomical and uniform neck phantom images. • Phantom background structure influences task-based assessment of iterative reconstruction and dose effects. • Transferability of CT assessment to clinical imaging can be expected to improve as the realism of the test environment increases.

Funder

Bundesministerium für Wirtschaft und Energie

Charité - Universitätsmedizin Berlin

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3