Abstract
Abstract
Background
Computed tomography (CT) reconstruction algorithms can improve image quality, especially deep learning reconstruction (DLR). We compared DLR, iterative reconstruction (IR), and filtered back projection (FBP) for lesion detection in neck CT.
Methods
Nine patient-mimicking neck phantoms were examined with a 320-slice scanner at six doses: 0.5, 1, 1.6, 2.1, 3.1, and 5.2 mGy. Each of eight phantoms contained one circular lesion (diameter 1 cm; contrast -30 HU to the background) in the parapharyngeal space; one phantom had no lesions. Reconstruction was made using FBP, IR, and DLR. Thirteen readers were tasked with identifying and localizing lesions in 32 images with a lesion and 20 without lesions for each dose and reconstruction algorithm. Receiver operating characteristic (ROC) and localization ROC (LROC) analysis were performed.
Results
DLR improved lesion detection with ROC area under the curve (AUC) 0.724 ± 0.023 (mean ± standard error of the mean) using DLR versus 0.696 ± 0.021 using IR (p = 0.037) and 0.671 ± 0.023 using FBP (p < 0.001). Likewise, DLR improved lesion localization, with LROC AUC 0.407 ± 0.039 versus 0.338 ± 0.041 using IR (p = 0.002) and 0.313 ± 0.044 using FBP (p < 0.001). Dose reduction to 0.5 mGy compromised lesion detection in FBP-reconstructed images compared to doses ≥ 2.1 mGy (p ≤ 0.024), while no effect was observed with DLR or IR (p ≥ 0.058).
Conclusion
DLR improved the detectability of lesions in neck CT imaging. Dose reduction to 0.5 mGy maintained lesion detectability when denoising reconstruction was used.
Relevance statement
Deep learning enhances lesion detection in neck CT imaging compared to iterative reconstruction and filtered back projection, offering improved diagnostic performance and potential for x-ray dose reduction.
Key Points
Low-contrast lesion detectability was assessed in anatomically realistic neck CT phantoms.
Deep learning reconstruction (DLR) outperformed filtered back projection and iterative reconstruction.
Dose has little impact on lesion detectability against anatomical background structures.
Graphical Abstract
Publisher
Springer Science and Business Media LLC