Algorithmic transparency and interpretability measures improve radiologists’ performance in BI-RADS 4 classification

Author:

Jungmann Friederike,Ziegelmayer Sebastian,Lohoefer Fabian K.,Metz Stephan,Müller-Leisse Christina,Englmaier Maximilian,Makowski Marcus R.,Kaissis Georgios A.,Braren Rickmer F.ORCID

Abstract

Abstract Objective To evaluate the perception of different types of AI-based assistance and the interaction of radiologists with the algorithm’s predictions and certainty measures. Methods In this retrospective observer study, four radiologists were asked to classify Breast Imaging-Reporting and Data System 4 (BI-RADS4) lesions (n = 101 benign, n = 99 malignant). The effect of different types of AI-based assistance (occlusion-based interpretability map, classification, and certainty) on the radiologists’ performance (sensitivity, specificity, questionnaire) were measured. The influence of the Big Five personality traits was analyzed using the Pearson correlation. Results Diagnostic accuracy was significantly improved by AI-based assistance (an increase of 2.8% ± 2.3%, 95 %-CI 1.5 to 4.0 %, p = 0.045) and trust in the algorithm was generated primarily by the certainty of the prediction (100% of participants). Different human-AI interactions were observed ranging from nearly no interaction to humanization of the algorithm. High scores in neuroticism were correlated with higher persuasibility (Pearson’s r = 0.98, p = 0.02), while higher consciousness and change of accuracy showed an inverse correlation (Pearson’s r = −0.96, p = 0.04). Conclusion Trust in the algorithm’s performance was mostly dependent on the certainty of the predictions in combination with a plausible heatmap. Human-AI interaction varied widely and was influenced by personality traits. Key Points • AI-based assistance significantly improved the diagnostic accuracy of radiologists in classifying BI-RADS 4 mammography lesions. • Trust in the algorithm’s performance was mostly dependent on the certainty of the prediction in combination with a reasonable heatmap. • Personality traits seem to influence human-AI collaboration. Radiologists with specific personality traits were more likely to change their classification according to the algorithm’s prediction than others.

Funder

Technische Universität München

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3