Photon-Counting Computed Tomography (PC-CT) of the spine: impact on diagnostic confidence and radiation dose

Author:

Rau AlexanderORCID,Straehle Jakob,Stein Thomas,Diallo Thierno,Rau Stephan,Faby Sebastian,Nikolaou Konstantin,Schoenberg Stefan O.,Overhoff Daniel,Beck Jürgen,Urbach Horst,Klingler Jan-Helge,Bamberg Fabian,Weiss Jakob

Abstract

Abstract Objectives Computed tomography (CT) is employed to evaluate surgical outcome after spinal interventions. Here, we investigate the potential of multispectral photon-counting computed tomography (PC-CT) on image quality, diagnostic confidence, and radiation dose compared to an energy-integrating CT (EID-CT). Methods In this prospective study, 32 patients underwent PC-CT of the spine. Data was reconstructed in two ways: (1) standard bone kernel with 65-keV (PC-CTstd) and (2) 130-keV monoenergetic images (PC-CT130 keV). Prior EID-CT was available for 17 patients; for the remaining 15, an age–, sex–, and body mass index–matched EID-CT cohort was identified. Image quality (5-point Likert scales on overall, sharpness, artifacts, noise, diagnostic confidence) of PC-CTstd and EID-CT was assessed by four radiologists independently. If metallic implants were present (n = 10), PC-CTstd and PC-CT130 keV images were again assessed by 5-point Likert scales by the same radiologists. Hounsfield units (HU) were measured within metallic artifact and compared between PC-CTstd and PC-CT130 keV. Finally, the radiation dose (CTDIvol) was evaluated. Results Sharpness was rated significantly higher (p = 0.009) and noise significantly lower (p < 0.001) in PC-CTstd vs. EID-CT. In the subset of patients with metallic implants, reading scores for PC-CT130 keV revealed superior ratings vs. PC-CTstd for image quality, artifacts, noise, and diagnostic confidence (all p < 0.001) accompanied by a significant increase of HU values within the artifact (p < 0.001). Radiation dose was significantly lower for PC-CT vs. EID-CT (mean CTDIvol: 8.83 vs. 15.7 mGy; p < 0.001). Conclusions PC-CT of the spine with high-kiloelectronvolt reconstructions provides sharper images, higher diagnostic confidence, and lower radiation dose in patients with metallic implants. Key Points Compared to energy-integrating CT, photon-counting CT of the spine had significantly higher sharpness and lower image noise while radiation dose was reduced by 45%. In patients with metallic implants, virtual monochromatic photon-counting images at 130 keV were superior to standard reconstruction at 65 keV in terms of image quality, artifacts, noise, and diagnostic confidence.

Funder

Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg

Universitätsklinikum Freiburg

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,General Medicine

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3