Affiliation:
1. Physics and Astronomy Department University of Victoria Victoria British Columbia Canada
Abstract
AbstractPurposeTo characterize the dose‐response, energy dependence, postexposure changes, orientation dependence, and spatial capabilities of LD‐V1, a new low‐dose Gafchromic film for low‐energy x‐ray dosimetry.MethodsA single sheet of LD‐V1 Gafchromic film was cut into 15 × 20 mm2 rectangles with a notch to track orientation. Eight different doses between 5 and 320 mGy were delivered by an MXR‐160/22 x‐ray tube using x‐ray beams of 90, 100, and 120 kVp filtered with 3 mm of Al and 2 mm of Ti. The 120 kVp films were scanned at 1, 1.5, 2, 3, 12, 24, 48, 72, and 168 h postexposure in portrait orientation and additionally scanned in landscape orientation at 24 h. The 90 and 100 kVp films were scanned at 24 h postexposure in portrait orientation. Lastly, a 20 × 200 mm2 strip of film was irradiated using a thin‐slit imaging collimator and scanned 24 h postexposure to test the film performance in an x‐ray imaging application.ResultsOf the three color channels, the red channel was found to produce a dose‐response curve with a large range of net optical density (netOD) values across the considered dose range. A prominent energy dependence was discovered, resulting in dose discrepancies on the scale of 17 mGy between 90 and 120 kVp for a dose of 80 mGy. The measured postexposure changes suggest that the calibration irradiation‐to‐scan time should be longer than 12 h with a ± 4 h scanning time window for dose errors of <0.5%. An average dose difference of 3.4% was found between the two scanning orientations. Lastly, noise of 4% was measured in the thin slit collimator film for a dose of 30 mGy.ConclusionsWe have characterized the LD‐V1 film for low‐energy, low‐dose x‐ray dosimetry. Energy, scan‐time, and orientation dependencies should be considered when using this film.
Funder
Canada Foundation for Innovation