Evaluation of deep learning reconstructed high-resolution 3D lumbar spine MRI
Author:
Funder
GE Healthcare
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging,General Medicine
Link
https://link.springer.com/content/pdf/10.1007/s00330-022-08708-4.pdf
Reference35 articles.
1. McBee MP, Awan OA, Colucci AT et al (2018) Deep learning in radiology. Acad Radiol 25:1472–1480
2. Mazurowski MA, Buda M, Saha A, Bashir MR (2019) Deep learning in radiology: an overview of the concepts and a survey of the state of the art with focus on MRI. J Magn Reson Imaging 49:939–954
3. Rajpurkar P, Irvin J, Zhu K et al (2017) CheXNet: radiologist-level pneumonia detection on chest X-rays with deep learning. arXiv:1711.05225
4. Castro-Mateos I, Hua R, Pozo JM, Lazary A, Frangi AF (2016) Intervertebral disc classification by its degree of degeneration from T2-weighted magnetic resonance images. Eur Spine J 25:2721–2727
5. Hallinan JTPD, Zhu L, Yang K et al (2021) Deep learning model for automated detection and classification of central canal, lateral recess, and neural foraminal stenosis at lumbar spine MRI. Radiology 300:130–138
Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Assessment of multi-modal magnetic resonance imaging for glioma based on a deep learning reconstruction approach with the denoising method;Acta Radiologica;2024-09-02
2. Super-resolution deep learning reconstruction approach for enhanced visualization in lumbar spine MR bone imaging;European Journal of Radiology;2024-09
3. Improving Xenon‐129 lung ventilation image SNR with deep‐learning based image reconstruction;Magnetic Resonance in Medicine;2024-08-18
4. A review: artificial intelligence in image-guided spinal surgery;Expert Review of Medical Devices;2024-08-02
5. Prospective and multi-reader evaluation of deep learning reconstruction-based accelerated rectal MRI: image quality, diagnostic performance, and reading time;European Radiology;2024-07-17
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3