Diagnostic evaluation of deep learning accelerated lumbar spine MRI

Author:

Awan Komal M12ORCID,Goncalves Filho Augusto Lio M3ORCID,Tabari Azadeh12,Applewhite Brooks P12,Lang Min12,Lo Wei-Ching4,Sellers Robert4,Kollasch Peter4,Clifford Bryan4,Nickel Dominik5,Husseni Jad12,Rapalino Otto12,Schaefer Pamela12,Cauley Stephen4,Huang Susie Y126,Conklin John12

Affiliation:

1. Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, USA

2. Harvard Medical School, USA

3. Department of Radiology, The Ottawa Hospital, University of Ottawa, Canada

4. Siemens Medical Solutions USA, USA

5. Siemens Healthcare GmbH, Germany

6. Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, USA

Abstract

Background and Purpose Deep learning (DL) accelerated MR techniques have emerged as a promising approach to accelerate routine MR exams. While prior studies explored DL acceleration for specific lumbar MRI sequences, a gap remains in comprehending the impact of a fully DL-based MRI protocol on scan time and diagnostic quality for routine lumbar spine MRI. To address this, we assessed the image quality and diagnostic performance of a DL-accelerated lumbar spine MRI protocol in comparison to a conventional protocol. Methods We prospectively evaluated 36 consecutive outpatients undergoing non-contrast enhanced lumbar spine MRIs. Both protocols included sagittal T1, T2, STIR, and axial T2-weighted images. Two blinded neuroradiologists independently reviewed images for foraminal stenosis, spinal canal stenosis, nerve root compression, and facet arthropathy. Grading comparison employed the Wilcoxon signed rank test. For the head-to-head comparison, a 5-point Likert scale to assess image quality, considering artifacts, signal-to-noise ratio (SNR), anatomical structure visualization, and overall diagnostic quality. We applied a 15% noninferiority margin to determine whether the DL-accelerated protocol was noninferior. Results No significant differences existed between protocols when evaluating foraminal and spinal canal stenosis, nerve compression, or facet arthropathy (all p > .05). The DL-spine protocol was noninferior for overall diagnostic quality and visualization of the cord, CSF, intervertebral disc, and nerve roots. However, it exhibited reduced SNR and increased artifact perception. Interobserver reproducibility ranged from moderate to substantial (κ = 0.50–0.76). Conclusion Our study indicates that DL reconstruction in spine imaging effectively reduces acquisition times while maintaining comparable diagnostic quality to conventional MRI.

Funder

Siemens Medical Solutions USA

Publisher

SAGE Publications

Subject

Neurology (clinical),Radiology, Nuclear Medicine and imaging,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3