A unified modelling and simulation for coupled anomalous transport in porous media and its finite element implementation

Author:

Barrera O.

Abstract

AbstractThis paper presents an unified mathematical and computational framework for mechanics-coupled “anomalous” transport phenomena in porous media. The anomalous diffusion is mainly due to variable fluid flow rates caused by spatially and temporally varying permeability. This type of behaviour is described by a fractional pore pressure diffusion equation. The diffusion transient phenomena is significantly affected by the order of the fractional operators. In order to solve 3D consolidation problems of large scale structures, the fractional pore pressure diffusion equation is implemented in a finite element framework adopting the discretised formulation of fractional derivatives given by Grunwald–Letnikov (GL). Here the fractional pore pressure diffusion equation is implemented in the commercial software Abaqus through an open-source UMATHT subroutine. The similarity between pore pressure, heat and hydrogen transport is also discussed in order to show that it is possible to use the coupled thermal-stress analysis to solve fractional consolidation problems.

Funder

European Commission h2020 Marie Curie if

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Mathematics,Computational Theory and Mathematics,Mechanical Engineering,Ocean Engineering,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3