Nonlocal wrinkling instabilities in bilayered systems using peridynamics

Author:

Laurien MarieORCID,Javili Ali,Steinmann Paul

Abstract

AbstractWrinkling instabilities occur when a stiff thin film bonded to an elastic substrate undergoes compression. Regardless of the nature of compression, this phenomenon has been extensively studied through local models based on classical continuum mechanics. However, the experimental behavior is not yet fully understood and the influence of nonlocal effects remains largely unexplored. The objective of this paper is to fill this gap from a computational perspective by investigating nonlocal wrinkling instabilities in a bilayered system. Peridynamics (PD), a nonlocal continuum formulation, serves as a tool to model nonlocal material behavior. This manuscript presents a methodology to precisely predict the critical conditions by employing an eigenvalue analysis. Our results approach the local solution when the nonlocality parameter, the horizon size, approaches zero. An experimentally observed influence of the boundaries on the wave pattern is reproduced with PD simulations which suggests nonlocal material behavior as a physical origin. The results suggest that the level of nonlocality of a material model has quantitative influence on the main wrinkling characteristics, while most trends qualitatively coincide with predictions from the local analytical solution. However, a relation between the film thickness and the critical compression is revealed that is not existent in the local theory. Moreover, an approach to determine the peridynamic material parameters across a material interface is established by introducing an interface weighting factor. This paper, for the first time, shows that adding a nonlocal perspective to the analysis of bilayer wrinkling by using PD can significantly advance our understanding of the phenomenon.

Funder

Scientific and Technological Research Council of Turkey (TÜBITAK) Career Development Program

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Mathematics,Computational Theory and Mathematics,Mechanical Engineering,Ocean Engineering,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3