An efficient algorithm for rigid/deformable contact interaction based on the dual mortar method

Author:

Carvalho R. Pinto,Carneiro A. M. Couto,Pires F. M. Andrade,Popp A.ORCID

Abstract

AbstractIn a wide range of practical problems, such as forming operations and impact tests, treating one of the contacting bodies as a rigid obstacle is an excellent approximation to the physical phenomenon. In this work, the well-established dual mortar method is adopted to enforce interface constraints in the finite deformation frictionless contact of deformable bodies and rigid obstacles. The efficiency of the non-linear contact algorithm proposed here is based on two main contributions. Firstly, the weighted gap function is modified such that it retains the signal of the discrete gap function. Within the context of rigid/deformable contact, this unlocks a significant simplification by removing the need to explicitly evaluate the dual basis functions. The corresponding first-order interpolation is presented in detail. Particular focus is, then, placed on the extension for second-order interpolation by employing a piecewise linear interpolation scheme, which critically retains the geometrical information of the finite element mesh. Secondly, a new definition for the nodal orthonormal moving frame attached to each contact node is suggested. It reduces the geometrical coupling between the nodes and consequently decreases the stiffness matrix bandwidth. The proposed contributions decrease the computational complexity of dual mortar methods for rigid/deformable interaction, especially in the three-dimensional setting, while preserving accuracy and robustness.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Mathematics,Computational Theory and Mathematics,Mechanical Engineering,Ocean Engineering,Computational Mechanics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3