Affiliation:
1. Computational Mechanics and Materials Department, Idaho National Laboratory, Idaho Falls, ID 83415
2. Computational Frameworks Department, Idaho National Laboratory, Idaho Falls, ID 83415
Abstract
Abstract
Usage of contact mechanics methodologies is a pervasive modeling requirement in dynamic simulations. While for some trivial problems, solutions taken from analytical geometry are available, use of a finite element framework is common to achieve formulation generality. This work explores two dynamic contact formulations: one based on the traditional node-to-segment (NTS) approach, and a variationally consistent segment-to-segment (STS) mortar formulation. The NTS formulation employed here enforces the constraints kinematically (i.e., the interpenetration is enforced to the solver tolerance), whereas the mortar approach uses Lagrange multipliers to enforce the contact constraints. Both approaches are implemented in the open-source finite element framework Multiphysics Object-Oriented Simulation Environment (MOOSE). The results highlight two relevant contact-interface-related dynamic phenomena in finite element simulations. First, stabilization of contact constraints is discussed, taking into account the evolution of the total energy in a benchmark problem. Second, the influence of finite element discretization on both of the aforementioned contact formulations is analyzed by exercising a large-deformation example with continuous relative sliding. Variationally consistent contact approaches such as the mortar formulation lead to improved energy preservation and avoid spurious excitation of the system's frequencies. This is especially relevant in settings where inertia and vibrations are of importance.
Subject
Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献