Autonomic architecture for fault handling in mobile robots

Author:

Doran MartinORCID,Sterritt RoyORCID,Wilkie GeorgeORCID

Abstract

AbstractThis paper describes a generic autonomic architecture for use in developing systems for managing hardware faults in mobile robots. The method by which the generic architecture was developed is also described. Using autonomic principles, we focused on how to detect faults within a mobile robot and how specialized algorithms can be deployed to compensate for the faults discovered. We design the foundation of a generic architecture using the elements found in the MAPE-K and IMD architectures. We present case studies that show three different fault scenarios that can occur within the effectors, sensors and power units of a mobile robot. For each case study, we have developed algorithms for monitoring and analyzing data stored from previous tasks completed by the robot. We use the results from the case studies to create and refine a generic autonomic architecture that can be utilized for any general mobile robot setup for fault detection and fault compensation. We then describe a further case study which exercises the generic autonomic architecture in order to demonstrate its utility. Our proposal addresses fundamental challenges in operating remote mobile robots with little or no human intervention. If a fault does occur within the mobile robot during field operations, then having a self-automated strategy as part of its processes may result in the mobile robot continuing to function at a productive level. Our research has provided insights into the shortcomings of existing robot design which is also discussed.

Funder

University of Ulster

Publisher

Springer Science and Business Media LLC

Subject

Software

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Performance Guarantee for Autonomous Robotic Missions using Resource Management: The PANORAMA Approach;Journal of Intelligent & Robotic Systems;2024-03-22

2. Fault Detection and Analysis of a Mobile Robot using Radial Basis Function Network;2024 Third International Conference on Power, Control and Computing Technologies (ICPC2T);2024-01-18

3. Image Quality Safety Model for the Safety of the Intended Functionality in Highly Automated Agricultural Machines;2024

4. An Autonomic Architecture for Multi-Agent Self-Maintaining Robotic Systems;2023 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech);2023-11-14

5. How can ISO 13482:2014 account for the ethical and social considerations of robotic exoskeletons?;Technology in Society;2023-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3