Deep feature-based plant disease identification using machine learning classifier
Author:
Publisher
Springer Science and Business Media LLC
Subject
Software
Link
https://link.springer.com/content/pdf/10.1007/s11334-022-00513-y.pdf
Reference30 articles.
1. Adedoja A, Owolawi PA, Mapayi T (2019) Deep learning based on nasnet for plant disease recognition using leave images. In: 2019 International conference on advances in big data, computing and data communication systems (icABCD). IEEE, pp 1–5
2. Argüeso D, Picon A, Irusta U, Medela A, San-Emeterio MG, Bereciartua A, Alvarez-Gila A (2020) Few-shot learning approach for plant disease classification using images taken in the field. Comput Electron Agric 175:105542
3. Atole RR, Park D (2018) A multiclass deep convolutional neural network classifier for detection of common rice plant anomalies. Int J Adv Comput Sci Appl 9:1
4. Bhimte NR, Thool V (2018) Diseases detection of cotton leaf spot using image processing and svm classifier. In: 2018 Second international conference on intelligent computing and control systems (ICICCS). IEEE, pp 340–344
5. Ferentinos KP (2018) Deep learning models for plant disease detection and diagnosis. Comput Electron Agric 145:311–318
Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Enhancing Apple Leaf Disease Detection: A CNN-based Model Integrated with Image Segmentation Techniques for Precision Agriculture;International Journal of Mathematical, Engineering and Management Sciences;2024-08-01
2. Plant disease detection using a depth-wise separable-based adaptive deep neural network;Multimedia Tools and Applications;2024-04-08
3. Synergistic Detection: A Hybrid CNN-XGBoost Model for Cherry Leaf Spot Magnitude Differentiation;2024 4th International Conference on Innovative Practices in Technology and Management (ICIPTM);2024-02-21
4. Enhanced symbiotic organism search optimization algorithm for plant disease classification;Journal of Intelligent & Fuzzy Systems;2024-01-10
5. Plant Leaf Disease Detection using Novel Machine Learning Approach;2023 International Conference on Evolutionary Algorithms and Soft Computing Techniques (EASCT);2023-10-20
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3