A machine learning accelerated inverse design of underwater acoustic polyurethane coatings

Author:

Weeratunge Hansani,Shireen Zakiya,Iyer Sagar,Menzel Adrian,Phillips Andrew W.,Halgamuge Saman,Sandberg Richard,Hajizadeh ElnazORCID

Abstract

AbstractHere we propose a detailed protocol to enable an accelerated inverse design of acoustic coatings for underwater sound attenuation application by coupling Machine Learning and an optimization algorithm with Finite Element Models (FEM). The FEMs were developed to obtain the realistic performance of the polyurethane (PU) acoustic coatings with embedded cylindrical voids. The frequency dependent viscoelasticity of PU matrix is considered in FEM models to substantiate the impact on absorption peak associated with the embedded cylinders at low frequencies. This has been often ignored in previous studies of underwater acoustic coatings, where usually a constant frequency-independent complex modulus was used for the polymer matrix. The key highlight of the proposed optimization framework for the inverse design lies in its potential to tackle the computational hurdles of the FEM when calculating the true objective function. This is done by replacing the FEM with an efficiently computable surrogate model developed through a Deep Neural Network. This enhances the speed of predicting the absorption coefficient by a factor of $$4.5 \times 10^3$$ 4.5 × 10 3 compared to FEM model and is capable of rapidly providing a well-performing, sub-optimal solution in an efficient way. A significant, broadband, low-frequency attenuation is achieved by optimally configuring the layers of cylindrical voids. This is accomplished by accommodating attenuation mechanisms, including Fabry–P$$\acute{e}$$ e ´ rot resonance and Bragg scattering of the layers of voids. Furthermore, the proposed protocol enables the inverse and targeted design of underwater acoustic coatings through accelerating the exploration of the vast design space compared to time-consuming and resource-intensive conventional trial-and-error forward approaches.

Funder

University of Melbourne

Publisher

Springer Science and Business Media LLC

Subject

Control and Optimization,Computer Graphics and Computer-Aided Design,Computer Science Applications,Control and Systems Engineering,Software

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3