Adjoint node-based shape optimization of free-floating vessels

Author:

Kühl NiklasORCID,Nguyen Thanh Tung,Palm Michael,Jürgens Dirk,Rung ThomasORCID

Abstract

AbstractThe paper is concerned with a node-based, gradient-driven, continuous adjoint two-phase flow procedure to optimize the shapes of free-floating vessels and discusses three topics. First, we aim to convey that elements of a Cahn–Hilliard formulation should augment the frequently employed Volume-of-Fluid two-phase flow model to maintain dual consistency. It is seen that such consistency serves as the basis for a robust primal/adjoint coupling in practical applications at huge Reynolds and Froude numbers. The second topic covers different adjoint coupling strategies. A central aspect of the application is the floating position, particularly the trim and the sinkage, that interact with a variation of hydrodynamic loads induced by the shape updates. Other topics addressed refer to the required level of density coupling and a more straightforward—yet non-frozen—adjoint treatment of turbulence. The third part discusses the computation of a descent direction within a node-based environment. We will illustrate means to deform both the volume mesh and the hull shape simultaneously and at the same time obey technical constraints on the vessel’s displacement and its extensions. The Hilbert-space approach provides smooth shape updates using the established coding infrastructure of a computational fluid dynamics algorithm and provides access to managing additional technical constraints. Verification and validation follow from a submerged 2D cylinder case. The application includes a full-scale offshore supply vessel at $$\mathrm{Re} = 3 \times 10^8$$ Re = 3 × 10 8 and $$\mathrm{Fn} = 0.37$$ Fn = 0.37 . Results illustrate that the fully parallel procedure can automatically reduce the drag of an already pre-optimized shape by 9–13% within $$\approx\,{\mathcal{O}}$$ O (10,000-30,000) CPUh depending on the considered couplings and floatation aspects.

Publisher

Springer Science and Business Media LLC

Subject

Control and Optimization,Computer Graphics and Computer-Aided Design,Computer Science Applications,Control and Systems Engineering,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3