Shape optimization using the adjoint solver in computational fluid dynamics for additive manufacturing of a pollen filter

Author:

Jüngling N.1ORCID,Pospichl J.1,Niessner J.1ORCID

Affiliation:

1. Institute for Flow in Additively Manufactured Porous Media (ISAPS), Heilbronn University of Applied Sciences , Max-Planck-Str. 39, 74081 Heilbronn, Germany

Abstract

Pollen filters play an essential role in protecting people from airborne allergens and ensuring indoor air quality. Allergic reactions to pollen can lead to discomfort, reduced productivity, and increased healthcare costs. A low pressure drop of these pollen filters not only enhances the comfort of individuals using the filters but also contributes to energy savings in ventilation systems, thereby promoting environmental sustainability. This research focuses on the shape optimization of pollen filters using the adjoint solver in computational fluid dynamics, aiming to enhance both human health and environmental sustainability. In a previous study, an approach using the adjoint solver was developed to optimize both the separation efficiency and the pressure drop. In the current work, a methodology is presented that exploits these findings and allows the design of initial structures, subsequent optimization, and detailed experimental and numerical comparisons with a reference filter using the example of a pollen filter. To validate the effectiveness of the optimized filter, the initial geometry and the optimized geometry were fabricated and tested on a test bench. Compared to a reference filter, our filter disk was able to separate 2.9% more particles of size 6 μm and the pressure drop was lower by 34.2%. This research work demonstrates that the developed method can effectively be used to improve the performance of pollen filters. The results obtained from the validation suggest that the optimized geometry of the filter exhibits higher separation efficiency while keeping the pressure drop low compared to state-of-the-art pollen filters.

Funder

Carl-Zeiss-Stiftung

Ministry of Science, Research and Arts (MWK) Baden-Württemberg

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Influence of coconut and castor oil coating on engine intake non-woven filter performance;International Journal of Clothing Science and Technology;2024-09-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3