Chromosomes in the DNA era: Perspectives in diagnostics and research

Author:

Weise Anja1,Mrasek Kristin1,Pentzold Constanze1,Liehr Thomas1

Affiliation:

1. Aff1 0000 0001 1939 2794 grid.9613.d Institute of Human Genet ics, Jena Uni ver si ty Hos pi tal Fried rich Schil ler Uni ver sity Am Klinikum 1 07747 Jena Germany

Abstract

Abstract Chromosomes were discovered more than 130 years ago. The implementation of chromosomal investigations in clinical diagnostics was fueled by determining the correct number of human chromosomes to be 46 and the development of specific banding techniques. Subsequent technical improvements in the field of genetic diagnostics, such as fluorescence in situ hybridization (FISH), chromosomal microarrays (CMA, array CGH) or next-generation sequencing (NGS) techniques, partially succeeded in overcoming limitations of banding cytogenetics. Consequently, nowadays, higher diagnostic yields can be achieved if new approaches such as NGS, CMA or FISH are applied in combination with cytogenetics. Nonetheless, high-resolution DNA-focused techniques have dominated clinical diagnostics more recently, rather than a “chromosomic view,” including banding cytogenetics as a precondition for the application of higher resolution methods. Currently, there is a renaissance of this “chromosomic view” in research, understanding chromosomes to be an essential feature of genomic architecture, owing to the discovery of (i) higher order chromosomal sub-compartments, (ii) chromosomal features that influence genomic architecture, gene expression, and evolution, and (iii) 3D and 4D chromatin organization within the nucleus, including the complex way in which chromosomes interact with each other. Interestingly, in many instances research was triggered by specific clinical diagnostic cases or diseases that contributed to new and fascinating insights, not only into disease mechanisms but also into basic principles of chromosome biology. Here we review the role, the intrinsic value, and the perspectives of chromosomes in a molecular genetics-dominated human genetics diagnostic era and make comparison with basic research, where these benefits are well-recognized.

Publisher

Walter de Gruyter GmbH

Subject

Genetics (clinical),Genetics

Reference65 articles.

1. Claussen U (2005) Chromosomics. Cytogenet Genome Res 111:101–106

2. Liehr T, Mrasek K, Klein E et al (2017) Modern high throughput approaches are not meant to replace “old fashioned” but robust techniques. J Genet Genomics 1:e101

3. Liehr T (2014) Uniparental Disomy (UPD) in clinical genetics. A guide for clinicians and patients. Springer, Berlin, Heidelberg. ISBN 978-3-64255-287-8

4. Weise A, Mrasek K, Klein E et al (2012) Microdeletion and microduplication syndromes. J Histochem Cytochem 60:346–358

5. Microscopic and submicroscopic copy number variations (CNVs) in genetics and counseling;T Liehr,2014

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3