Real-time bidding campaigns optimization using user profile settings

Author:

Miralles-Pechuán LuisORCID,Qureshi M. Atif,Namee Brian Mac

Abstract

AbstractReal-Time bidding is nowadays one of the most promising systems in the online advertising ecosystem. In the presented study, the performance of RTB campaigns is improved by optimising the parameters of the users’ profiles and the publishers’ websites. Most studies about optimising RTB campaigns are focused on the bidding strategy; estimating the best value for each bid. However, our research is focused on optimising RTB campaigns by finding out configurations that maximise both the number of impressions and the average profitability of the visits. An online campaign configuration generally consists of a set of parameters along with their values such as {Browser = “Chrome”, Country = “Germany”, Age = “20–40” and Gender = “Woman”}. The experiments show that, when the number of required visits by advertisers is low, it is easy to find configurations with high average profitability, but as the required number of visits increases, the average profitability diminishes. Additionally, configuration optimisation has been combined with other interesting strategies to increase, even more, the campaigns’ profitability. In particular, the presented study considers the following complementary strategies to increase profitability: (1) selecting multiple configurations with a small number of visits rather than a unique configuration with a large number of visits, (2) discarding visits according to certain cost and profitability thresholds, (3) analysing a reduced space of the dataset and extrapolating the solution over the whole dataset, and (4) increasing the search space by including solutions below the required number of visits. The developed campaign optimisation methodology could be offered by RTB and other advertising platforms to advertisers to make their campaigns more profitable.

Funder

Technological University Dublin

Publisher

Springer Science and Business Media LLC

Subject

Human-Computer Interaction,Economics, Econometrics and Finance (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3