A Deep Learning-Based Decision Support System for Mobile Performance Marketing

Author:

Matos Luís Miguel1,Cortez Paulo1,Mendes Rui2,Moreau Antoine3

Affiliation:

1. ALGORITMI/LASI, Department of Information Systems, University of Minho, Guimarães, Portugal

2. ALGORITMI/LASI, Department of Informatics, University of Minho, Braga, Portugal

3. OLAmobile, Spinpark, Guimarães, Portugal

Abstract

In Mobile Performance Marketing (MPM), monetary compensation only occurs when an advertisement results in a conversion (e.g., sale of a product or service). In this work, we propose an intelligent decision support system (IDSS) to automatically select mobile marketing campaigns for users. The IDSS is based on a computationally efficient mobile user conversion prediction model that assumes a novel Percentage Categorical Pruning (PCP) categorical preprocessing and an online deep multilayer perceptron (MLP) reuse model (MLPr). Using private (nonpublicly available) business MPM data provided by a marketing company, the MLPr model outperformed an offline multilayer perceptron and a logistic regression, obtaining a high quality class discrimination when applied to sampled (85% to 92%) and complete (90% to 94%) data. In addition, the MLPr compared favorably with other machine learning (ML) models (e.g., Random Forest, XGBoost), as well as with other deep neural networks (e.g., diamond shaped). Moreover, we designed two strategies (A — best campaign selection; and B — random selection among the top candidate campaigns) to build the IDSS, in which the predictive deep learning model is used to perform a real-time selection of advertisement campaigns for mobile users. Using recently collected big data (with millions of redirect events) from a worldwide MPM company, we performed a realistic IDSS evaluation that considered three criteria: response time, potential profit and advertiser diversity. Overall, competitive results were achieved by the IDSS B strategy when compared with the current marketing company ad assignment method.

Funder

Norte Portugal Regional Operational Programme

European Regional Development Fund

FCT

Publisher

World Scientific Pub Co Pte Ltd

Subject

General Medicine,Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3