Leveraging friend and group information to improve social recommender system
Author:
Publisher
Springer Science and Business Media LLC
Subject
Human-Computer Interaction,Economics, Econometrics and Finance (miscellaneous)
Link
http://link.springer.com/content/pdf/10.1007/s10660-019-09390-3.pdf
Reference73 articles.
1. Li, Q., Liang, N., & Li, E. Y. (2018). Does friendship quality matter in social commerce? An experimental study of its effect on purchase intention. Electronic Commerce Research,18(4), 693–717.
2. Tian, X., & Liu, L. (2017). Does big data mean big knowledge? Integration of big data analysis and conceptual model for social commerce research. Electronic Commerce Research,17(1), 169–183.
3. Ziegler, C.-N., Mcnee, S. M., & Georg, L. (2005). Improving recommendation lists through topic diversification. In International conference on world wide web.
4. Adomavicius, G., Sankaranarayanan, R., Sen, S., & Tuzhilin, A. (2005). Incorporating contextual information in recommender systems using a multidimensional approach. ACM Transactions on Information Systems,23(1), 103–145.
5. Resnick, P., & Varian, H. R. (1997). Recommender systems. Communications of the ACM,40(3), 56–59.
Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Social Recommendation Framework: A Case Study of Chinese Long-Stayers in Chiang Mai;Journal of Information & Knowledge Management;2024-03-21
2. To Share or Not to Share: Understanding and Modeling Individual Disclosure Preferences in Recommender Systems for the Workplace;Proceedings of the ACM on Human-Computer Interaction;2024-02-16
3. Improving the recommendation accuracy of TrustSVD via trustworthy analysis in the social network environment;Journal of Information Science;2022-11-23
4. Integrating User-Group relationships under interest similarity constraints for social recommendation;Knowledge-Based Systems;2022-08
5. Toward Point-of-Interest Recommendation Systems: A Critical Review on Deep-Learning Approaches;Electronics;2022-06-26
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3