Toward Point-of-Interest Recommendation Systems: A Critical Review on Deep-Learning Approaches

Author:

Safavi Sadaf,Jalali MehrdadORCID,Houshmand Mahboobeh

Abstract

In recent years, location-based social networks (LBSNs) that allow members to share their location and provide related services, and point-of-interest (POIs) recommendations which suggest attractive places to visit, have become noteworthy and useful for users, research areas, industries, and advertising companies. The POI recommendation system combines different information sources and creates numerous research challenges and questions. New research in this field utilizes deep-learning techniques as a solution to the issues because it has the ability to represent the nonlinear relationship between users and items more effectively than other methods. Despite all the obvious improvements that have been made recently, this field still does not have an updated and integrated view of the types of methods, their limitations, features, and future prospects. This paper provides a systematic review focusing on recent research on this topic. First, this approach prepares an overall view of the types of recommendation methods, their challenges, and the various influencing factors that can improve model performance in POI recommendations, then it reviews the traditional machine-learning methods and deep-learning techniques employed in the POI recommendation and analyzes their strengths and weaknesses. The recently proposed models are categorized according to the method used, the dataset, and the evaluation metrics. It found that these articles give priority to accuracy in comparison with other dimensions of quality. Finally, this approach introduces the research trends and future orientations, and it realizes that POI recommender systems based on deep learning are a promising future work.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3