Abstract
AbstractA vast body of work highlights executive functions (EFs) as robust correlates of mathematics achievement over the primary and preschool years. Yet, despite such correlational evidence, there is limited evidence that EF interventions yield improvements in early years mathematics. As intervention studies are a powerful tool to move beyond correlation to causality, failures of transfer from executive functions interventions are, we argue, highly problematic for both applied and theoretical reasons. We review the existing correlational and intervention literature at complementary neuroscientific, cognitive, developmental and educational levels. We appraise distinct theories of change underpinning the correlations between EF and early mathematics, as well as explicit or implicit theories of change for different types of EF interventions. We find that isolated EF interventions are less likely to transfer to improvements in mathematics than integrated interventions. Via this conceptual piece, we highlight that the field of EF development is in need of (1) a clearer framework for the mechanisms underpinning the relationships between early EF and other developing domains, such as mathematical cognition; (2) clearer putative theories of change for how interventions of different kinds operate in the context of EF and such domains; (3) and greater clarity on the developmental and educational contexts that influence these causal associations. Our synthesis of the evidence emphasises the need to consider the dynamic development of EFs with co-developing cognitive functions, such as early math skills, when designing education environments. [234 words].
Publisher
Springer Science and Business Media LLC
Subject
Developmental and Educational Psychology,Education
Reference112 articles.
1. Abrahamse, E., Braem, S., Notebaert, W., & Verguts, T. (2016). Grounding cognitive control in associative learning. Psychological Bulletin, 142(7), 693–728. https://doi.org/10.1037/bul0000047
2. Amso, D., & Scerif, G. (2015). The attentive brain: insights from developmental cognitive neuroscience. Nature Reviews. Neuroscience, 16(10), 606–619. https://doi.org/10.1038/nrn4025
3. Ansari, D., König, J., Leask, M., & Tokuhama-Espinosa, T. (2017). Developmental cognitive neuroscience: Implications for teachers’ pedagogical knowledge. In S. Guerriero (Ed.), Pedagogical Knowledge and the Changing Nature of the Teaching Profession (pp. 195–222). OECD Publishing.
4. Aston-Jones, G., & Cohen, J. D. (2005). Adaptive gain and the role of the locus coeruleus-norepinephrine system in optimal performance. The Journal of Comparative Neurology, 493(1), 99–110. https://doi.org/10.1002/cne.20723
5. Bailey, D. H., Duncan, G. J., Watts, T., Clements, D. H., & Sarama, J. (2018). Risky business: Correlation and causation in longitudinal studies of skill development. American Psychologist, 73(1), 81.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献