Block preconditioners for linear systems in interior point methods for convex constrained optimization

Author:

Zilli Giovanni,Bergamaschi LucaORCID

Abstract

AbstractIn this paper, we address the preconditioned iterative solution of the saddle-point linear systems arising from the (regularized) Interior Point method applied to linear and quadratic convex programming problems, typically of large scale. Starting from the well-studied Constraint Preconditioner, we review a number of inexact variants with the aim to reduce the computational cost of the preconditioner application within the Krylov subspace solver of choice. In all cases we illustrate a spectral analysis showing the conditions under which a good clustering of the eigenvalues of the preconditioned matrix can be obtained, which foreshadows (at least in case PCG/MINRES Krylov solvers are used), a fast convergence of the iterative method. Results on a set of large size optimization problems confirm that the Inexact variants of the Constraint Preconditioner can yield efficient solution methods.

Funder

Università degli Studi di Padova

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3