Abstract
AbstractIn this paper, we address the preconditioned iterative solution of the saddle-point linear systems arising from the (regularized) Interior Point method applied to linear and quadratic convex programming problems, typically of large scale. Starting from the well-studied Constraint Preconditioner, we review a number of inexact variants with the aim to reduce the computational cost of the preconditioner application within the Krylov subspace solver of choice. In all cases we illustrate a spectral analysis showing the conditions under which a good clustering of the eigenvalues of the preconditioned matrix can be obtained, which foreshadows (at least in case PCG/MINRES Krylov solvers are used), a fast convergence of the iterative method. Results on a set of large size optimization problems confirm that the Inexact variants of the Constraint Preconditioner can yield efficient solution methods.
Funder
Università degli Studi di Padova
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献