On the Alesker-Verbitsky Conjecture on HyperKähler Manifolds

Author:

Dinew Sławomir,Sroka Marcin

Abstract

AbstractWe solve the quaternionic Monge–Ampère equation on hyperKähler manifolds. In this way we prove the ansatz for the conjecture raised by Alesker and Verbitsky claiming that this equation should be solvable on any hyperKähler with torsion manifold, at least when the canonical bundle is trivial holomorphically. The novelty in our approach is that we do not assume any flatness of the underlying hypercomplex structure which was the case in all the approaches for the higher order a priori estimates so far. The resulting Calabi–Yau type theorem for HKT metrics is discussed.

Publisher

Springer Science and Business Media LLC

Subject

Geometry and Topology,Analysis

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Octonionic Calabi–Yau Theorem;The Journal of Geometric Analysis;2024-07-10

2. The Monge–Ampère equation for $$(n-1)$$-quaternionic PSH functions on a hyperKähler manifold;Mathematische Zeitschrift;2024-05-10

3. Sharp uniform bound for the quaternionic Monge-Ampère equation on hyperhermitian manifolds;Calculus of Variations and Partial Differential Equations;2024-04-13

4. HKT Manifolds: Hodge Theory, Formality and Balanced Metrics;The Quarterly Journal of Mathematics;2024-04-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3