Affiliation:
1. Dipartimento di Matematica “G. Peano”, Università degli studi di Torino , Via Carlo Alberto 10, 10123 Torino, Italy
2. Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Unità di Matematica e Informatica, Università degli Studi di Parma , Parco Area delle Scienze 53/A, 43124 Parma, Italy
Abstract
ABSTRACT
Let $(M,I,J,K,\Omega)$ be a compact HKT manifold, and let us denote with $\partial$ the conjugate Dolbeault operator with respect to I, $\partial_J:=J^{-1}\overline\partial J$, $\partial^\Lambda:=[\partial,\Lambda]$, where Λ is the adjoint of $L:=\Omega\wedge-$. Under suitable assumptions, we study Hodge theory for the complexes $(A^{\bullet,0},\partial,\partial_J)$ and $(A^{\bullet,0},\partial,\partial^\Lambda)$ showing a similar behavior to Kähler manifolds. In particular, several relations among the Laplacians, the spaces of harmonic forms and the associated cohomology groups, together with Hard Lefschetz properties, are proved. Moreover, we show that for a compact HKT $\mathrm{SL}(n,\mathbb{H})$-manifold, the differential graded algebra $(A^{\bullet,0},\partial)$ is formal and this will lead to an obstruction for the existence of an HKT $\mathrm{SL}(n,\mathbb{H})$ structure $(I,J,K,\Omega)$ on a compact complex manifold (M, I). Finally, balanced HKT structures on solvmanifolds are studied.
Publisher
Oxford University Press (OUP)
Reference38 articles.
1. A uniform estimate for general quaternionic Calabi problem (with appendix by Daniel Barlet);Alesker;Adv. Math.,2017
2. Plurisubharmonic functions on hypercomplex manifolds and HKT-geometry;Alesker;J. Glob. Anal.,2006
3. Quaternionic Monge-Ampére equation and Calabi problem for HKT-manifolds;Alesker;Israel. J. Math.,2010
4. On the canonical bundle of complex solvmanifolds and applications to hypercomplex geometry, e-print arXiv:2307.16673;Andrada
5. Potentials for Hyper-Kähler metrics with torsion;Banos;Class. Quantum Gravity,2004