HKT Manifolds: Hodge Theory, Formality and Balanced Metrics

Author:

Gentili Giovanni12,Tardini Nicoletta12ORCID

Affiliation:

1. Dipartimento di Matematica “G. Peano”, Università degli studi di Torino , Via Carlo Alberto 10, 10123 Torino, Italy

2. Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Unità di Matematica e Informatica, Università degli Studi di Parma , Parco Area delle Scienze 53/A, 43124 Parma, Italy

Abstract

ABSTRACT Let $(M,I,J,K,\Omega)$ be a compact HKT manifold, and let us denote with $\partial$ the conjugate Dolbeault operator with respect to I, $\partial_J:=J^{-1}\overline\partial J$, $\partial^\Lambda:=[\partial,\Lambda]$, where Λ is the adjoint of $L:=\Omega\wedge-$. Under suitable assumptions, we study Hodge theory for the complexes $(A^{\bullet,0},\partial,\partial_J)$ and $(A^{\bullet,0},\partial,\partial^\Lambda)$ showing a similar behavior to Kähler manifolds. In particular, several relations among the Laplacians, the spaces of harmonic forms and the associated cohomology groups, together with Hard Lefschetz properties, are proved. Moreover, we show that for a compact HKT $\mathrm{SL}(n,\mathbb{H})$-manifold, the differential graded algebra $(A^{\bullet,0},\partial)$ is formal and this will lead to an obstruction for the existence of an HKT $\mathrm{SL}(n,\mathbb{H})$ structure $(I,J,K,\Omega)$ on a compact complex manifold (M, I). Finally, balanced HKT structures on solvmanifolds are studied.

Publisher

Oxford University Press (OUP)

Reference38 articles.

1. A uniform estimate for general quaternionic Calabi problem (with appendix by Daniel Barlet);Alesker;Adv. Math.,2017

2. Plurisubharmonic functions on hypercomplex manifolds and HKT-geometry;Alesker;J. Glob. Anal.,2006

3. Quaternionic Monge-Ampére equation and Calabi problem for HKT-manifolds;Alesker;Israel. J. Math.,2010

4. On the canonical bundle of complex solvmanifolds and applications to hypercomplex geometry, e-print arXiv:2307.16673;Andrada

5. Potentials for Hyper-Kähler metrics with torsion;Banos;Class. Quantum Gravity,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3