Community detection and unveiling of hierarchy in networks: a density-based clustering approach

Author:

Felfli ZinebORCID,George Roy,Shujaee Khalil,Kerwat Mohamed

Abstract

Abstract The unveiling of communities within a network or graph, and the hierarchization of its members that results is of utmost importance in areas ranging from social to biochemical networks, from electronic circuits to cybersecurity. We present a statistical mechanics approach that uses a normalized Gaussian function which captures the impact of a node within its neighborhood and leads to a density-ranking of nodes by considering the distance between nodes as punishment. A hill-climbing procedure is applied to determine the density attractors and identify the unique parent (leader) of each member as well as the group leader. This organization of the nodes results in a tree-like network with multiple clusters, the community tree. The method is tested using synthetic networks generated by the LFR benchmarking algorithm for network sizes between 500 and 30,000 nodes and mixing parameter between 0.1 and 0.9. Our results show a reasonable agreement with the LFR results for low to medium values of the mixing parameter and indicate a very mild dependence on the size of the network.

Funder

Advanced Research Projects Agency - Energy

NGC

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Computer Networks and Communications,Multidisciplinary

Reference26 articles.

1. Akamatsu T (1996) Cyclic flows, markov process and stochastic traffic assignment. Transportation Res B 30(5):369–386

2. Bahrami Bidoni Z, George R (2014) Discovering Community Structure in Dynamic Social Networks using the Correlation Density Rank. ASE BigData/SocialCom/Cybersecurity Conference, Palo Alto

3. Barabási A-L (2017) Network science. Cambridge University Press, Cambridge

4. Barabási A-L, Albert R (1999) Emergence of scaling in random networks. Science 286:509–512

5. Daudin J-J, Picard F, Robin S (2008) A mixture model for random graphs. Stat Comput 18(2):173–183

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3