Affiliation:
1. Tecnologico de Monterrey, School of Engineering and Science, Monterrey, Mexico
2. Advanced Technologies Application Center, CENATAV, Havana, Cuba
Abstract
Face clustering is the task of grouping unlabeled face images according to individual identities. Several applications require this type of clustering, for instance, social media, law enforcement, and surveillance applications. In this paper, we propose an effective graph-based method for clustering faces in the wild. The proposed algorithm does not require prior knowledge of the data. This fact increases the pertinence of the proposed method near to market solutions. The experiments conducted on four well-known datasets showed that our proposal achieves state-of-the-art results, regarding the clustering performance, also showing stability for different values of the input parameter. Moreover, in these experiments, it is shown that our proposal discovers a number of identities closer to the real number existing in the data.
Subject
General Mathematics,General Medicine,General Neuroscience,General Computer Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献