Effective and Generalizable Graph-Based Clustering for Faces in the Wild

Author:

Chang Leonardo1ORCID,Pérez-Suárez Airel2,González-Mendoza Miguel1

Affiliation:

1. Tecnologico de Monterrey, School of Engineering and Science, Monterrey, Mexico

2. Advanced Technologies Application Center, CENATAV, Havana, Cuba

Abstract

Face clustering is the task of grouping unlabeled face images according to individual identities. Several applications require this type of clustering, for instance, social media, law enforcement, and surveillance applications. In this paper, we propose an effective graph-based method for clustering faces in the wild. The proposed algorithm does not require prior knowledge of the data. This fact increases the pertinence of the proposed method near to market solutions. The experiments conducted on four well-known datasets showed that our proposal achieves state-of-the-art results, regarding the clustering performance, also showing stability for different values of the input parameter. Moreover, in these experiments, it is shown that our proposal discovers a number of identities closer to the real number existing in the data.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3