Transition analysis of boundary-based active configurations in temporal simplicial complexes for ingredient co-occurrences in recipe streams

Author:

Fujisawa Koudai,Kumano Masahito,Kimura Masahiro

Abstract

AbstractAiming at knowledge discovery for temporal sequences of cooking recipes published in social media platforms from the viewpoint of network science, we consider an analysis of temporal higher-order networks of ingredients derived from such recipe streams by focusing on the framework of simplicial complex. Previous work found interesting properties of temporal simplicial complexes for the human proximity interactions in five different social settings by examining the configuration transitions before and after triplet interaction events corresponding to 2-simplices. In this paper, as an effective extension of the previous work to the case of higher dimensionaln-simplices corresponding to newly published recipes, we propose a novel method of configuration transition analysis by incorporating the following two features. First, to focus on changes in the topological structure of temporal simplicial complex, we incorporate analyzing the transitions of boundary-based configurations. Next, to focus on the temporal heterogeneity in usage activities of ingredients, we incorporate analyzing the transitions of active configurations by introducing the activity degree of configuration. Using real data of a Japanese recipe sharing site, we empirically evaluate the effectiveness of the proposed method, and reveal some characteristics of the temporal evolution of Japanese homemade recipes published in social media from the perspective of ingredient co-occurrences.

Funder

JSPS KAKENHI

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Computer Networks and Communications,Multidisciplinary

Reference28 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3