Sailboat navigation control system based on spiking neural networks

Author:

Giraldo Nelson Santiago,Isaza Sebastián,Velásquez Ricardo Andrés

Abstract

AbstractIn this paper, we presented the development of a navigation control system for a sailboat based on spiking neural networks (SNN). Our inspiration for this choice of network lies in their potential to achieve fast and low-energy computing on specialized hardware. To train our system, we use the modulated spike time-dependent plasticity reinforcement learning rule and a simulation environment based on the BindsNET library and USVSim simulator. Our objective was to develop a spiking neural network-based control systems that can learn policies allowing sailboats to navigate between two points by following a straight line or performing tacking and gybing strategies, depending on the sailing scenario conditions. We presented the mathematical definition of the problem, the operation scheme of the simulation environment, the spiking neural network controllers, and the control strategy used. As a result, we obtained 425 SNN-based controllers that completed the proposed navigation task, indicating that the simulation environment and the implemented control strategy work effectively. Finally, we compare the behavior of our best controller with other algorithms and present some possible strategies to improve its performance.

Funder

University of Antioquia

Publisher

Springer Science and Business Media LLC

Subject

Control and Optimization,Aerospace Engineering,Control and Systems Engineering,Information Systems,Signal Processing,Electrical and Electronic Engineering,Modeling and Simulation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. VPRTempo: A Fast Temporally Encoded Spiking Neural Network for Visual Place Recognition;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13

2. Fourier Analysis with Spike-Based Signal Representations;2024 26th International Conference on Digital Signal Processing and its Applications (DSPA);2024-03-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3