On $$\alpha $$-Firmly Nonexpansive Operators in r-Uniformly Convex Spaces

Author:

Bërdëllima ArianORCID,Steidl Gabriele

Abstract

AbstractWe introduce the class of $$\alpha $$ α -firmly nonexpansive and quasi $$\alpha $$ α -firmly nonexpansive operators on r-uniformly convex Banach spaces. This extends the existing notion from Hilbert spaces, where $$\alpha $$ α -firmly nonexpansive operators coincide with so-called $$\alpha $$ α -averaged operators. For our more general setting, we show that $$\alpha $$ α -averaged operators form a subset of $$\alpha $$ α -firmly nonexpansive operators. We develop some basic calculus rules for (quasi) $$\alpha $$ α -firmly nonexpansive operators. In particular, we show that their compositions and convex combinations are again (quasi) $$\alpha $$ α -firmly nonexpansive. Moreover, we will see that quasi $$\alpha $$ α -firmly nonexpansive operators enjoy the asymptotic regularity property. Then, based on Browder’s demiclosedness principle, we prove for r-uniformly convex Banach spaces that the weak cluster points of the iterates $$x_{n+1}:=Tx_{n}$$ x n + 1 : = T x n belong to the fixed point set $${{\,\mathrm{Fix}\,}}T$$ Fix T whenever the operator T is nonexpansive and quasi $$\alpha $$ α -firmly. If additionally the space has a Fréchet differentiable norm or satisfies Opial’s property, then these iterates converge weakly to some element in $${{\,\mathrm{Fix}\,}}T$$ Fix T . Further, the projections $$P_{{{\,\mathrm{Fix}\,}}T}x_n$$ P Fix T x n converge strongly to this weak limit point. Finally, we give three illustrative examples, where our theory can be applied, namely from infinite dimensional neural networks, semigroup theory, and contractive projections in $$L_p$$ L p , $$p \in (1,\infty ) \backslash \{2\}$$ p ( 1 , ) \ { 2 } spaces on probability measure spaces.

Funder

DFG

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Mathematics (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3