Multi-agent active information gathering in discrete and continuous-state decentralized POMDPs by policy graph improvement

Author:

Lauri MikkoORCID,Pajarinen Joni,Peters Jan

Abstract

AbstractDecentralized policies for information gathering are required when multiple autonomous agents are deployed to collect data about a phenomenon of interest when constant communication cannot be assumed. This is common in tasks involving information gathering with multiple independently operating sensor devices that may operate over large physical distances, such as unmanned aerial vehicles, or in communication limited environments such as in the case of autonomous underwater vehicles. In this paper, we frame the information gathering task as a general decentralized partially observable Markov decision process (Dec-POMDP). The Dec-POMDP is a principled model for co-operative decentralized multi-agent decision-making. An optimal solution of a Dec-POMDP is a set of local policies, one for each agent, which maximizes the expected sum of rewards over time. In contrast to most prior work on Dec-POMDPs, we set the reward as a non-linear function of the agents’ state information, for example the negative Shannon entropy. We argue that such reward functions are well-suited for decentralized information gathering problems. We prove that if the reward function is convex, then the finite-horizon value function of the Dec-POMDP is also convex. We propose the first heuristic anytime algorithm for information gathering Dec-POMDPs, and empirically prove its effectiveness by solving discrete problems an order of magnitude larger than previous state-of-the-art. We also propose an extension to continuous-state problems with finite action and observation spaces by employing particle filtering. The effectiveness of the proposed algorithms is verified in domains such as decentralized target tracking, scientific survey planning, and signal source localization.

Funder

Horizon 2020

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence

Reference57 articles.

1. Allen, M., & Zilberstein, S. (2009). Complexity of decentralized control: Special cases. In Advances in neural information processing systems (pp. 19–27).

2. Amato, C., & Zilberstein, S. (2009). Achieving goals in decentralized POMDPs. In Autonomous agents and multiagent systems (AAMAS) (pp. 593–600).

3. Araya-López, M., Buffet, O., Thomas, V., & Charpillet, F. (2010). A POMDP extension with belief-dependent rewards. In Advances in neural information processing systems (pp. 64–72).

4. Atanasov, N., Le Ny, J., Daniilidis, K., & Pappas, G. J. (2015). Decentralized active information acquisition: Theory and application to multi-robot SLAM. In IEEE International conference on robotics and automation (ICRA) (pp. 4775–4782).

5. Atanasov, N. A., Le Ny, J., & Pappas, G. J. (2015). Distributed algorithms for stochastic source seeking with mobile robot networks. Journal of Dynamic Systems, Measurement, and Control, 137(3), 031004.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3