1. Aziz, H., Gaspers, S., Mackenzie, S., & Walsh, T. (2015). Fair assignment of indivisible objects under ordinal preferences. Artificial Intelligence, 227, 71–92.
2. Aziz, H., Walsh, T., & Xia, L. (2015). Possible and necessary allocations via sequential mechanisms. In Proceedings of the 24th International Joint Conference on Artificial Intelligence (pp. 468–474). AAAI Press/IJCAI.
3. Bansal, N., & Sviridenko, M. (2006). The Santa Claus problem. In Proceedings of the 38th ACM Symposium on Theory of Computing (pp. 31–40). ACM Press
4. Baumeister, D., & Rothe, J. (2015). Preference aggregation by voting. In J. Rothe (Ed.), Economics and computation. An introduction to algorithmic game theory, computational social choice, and fair division, chap 4 (pp. 197–325). Berlin: Springer.
5. Baumeister, D., Bouveret, S., Lang, J., Nguyen, N., Nguyen, T., Rothe, J., et al. (2014). Axiomatic and computational aspects of scoring allocation rules for indivisible goods. In A. Procaccia & T. Walsh (Eds.), Proceedings of the 5th international workshop on computational social choice. Pittsburgh, PA: Carnegie Mellon University.