1. Anandkumar, A., Foster, D. P., Hsu, D. J., Kakade, S. M. & Liu, Y.-K. (2012). A spectral algorithm for latent dirichlet allocation. In Advances in neural information processing systems (pp. 917–925).
2. Arora, S., Ge, R., Halpern, Y., Mimno, D., Moitra, A., Sontag, D., et al. (2013). A practical algorithm for topic modeling with provable guarantees. In International conference on machine learning (pp. 280–288).
3. Arora, S., Ge, R., Kannan, R., & Moitra, A. (2012a). Computing a nonnegative matrix factorization—provably. In Proceedings of the forty-fourth annual ACM symposium on theory of computing (pp. 145–162). ACM.
4. Arora, S., Ge, R., & Moitra, A. (2012b). Learning topic models—going beyond SVD. In 2012 IEEE 53rd annual symposium on foundations of computer science (FOCS), (pp. 1–10). IEEE.
5. Bansal, T., Bhattacharyya, C., & Kannan, R. (2014) A provable SVD-based algorithm for learning topics in dominant admixture corpus. In Advances in neural information processing systems (pp. 1997–2005).