Minimizing the expected maximum lateness for a job shop subject to stochastic machine breakdowns

Author:

Zambrano-Rey Gabriel Mauricio,González-Neira Eliana MaríaORCID,Forero-Ortiz Gabriel Fernando,Ocampo-Monsalve María José,Rivera-Torres Andrea

Abstract

AbstractThis paper addresses a stochastic job shop scheduling problem with sequence-dependent setup times, aiming to minimize the expected maximum lateness. The stochastic nature is modeled by considering uncertain times between failures (TBF) and uncertain times to repair (TTR). To tackle this problem, a simheuristic approach is proposed, which combines a tabu search (TS) algorithm with Monte Carlo simulation. A total of 320 instances were used to conduct multiple experiments. Instances were generated with two distributions to study the behavior of stochastic TTR and TBF under log-normal and exponential distributions. Firstly, the performance of the simheuristic was evaluated for small instances by comparing it with the simulation of optimal solutions obtained with a mixed-integer linear programming (MILP) model. The simheuristic approach demonstrated an average improvement of around 7% compared to the simulation of MILP model solutions. Secondly, the simheuristic performance was evaluated for medium and large-size instances by comparing it with the simulation of the solutions obtained by the earliest due date (EDD) and process time plus work in the next queue plus negative slack (PT + WINQ + SL) dispatching rules. The results showed an average improvement of around 11% compared to EDD and 14% compared to PT + WINQ + SL. Furthermore, the results highlight that even when the two distributions have the same expected value and coefficient of variation, they can yield different expected maximum lateness values. This emphasizes the importance of precise distribution fitting when solving real cases to achieve effective scheduling performance.

Funder

Pontifical Xavierian University

Publisher

Springer Science and Business Media LLC

Subject

Management Science and Operations Research,General Decision Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3