1. Ahuja, R. K., Magnanti, T. L., & Orlin, J. B. (1993). Network flows: Theory, algorithms, and applications. Upper Saddle River, NJ: Prentice-Hall Inc.
2. Bagger, N., Kristiansen, S., Sørensen, M., & Stidsen, T. (2015). Flow formulation-based model for the curriculum-based course timetabling problem. In Proceedings of the 7th multidisciplinary international conference on scheduling: Theory and applications (MISTA 2015) (pp. 825–848).
3. Bettinelli, A., Cacchiani, V., Roberti, R., & Toth, P. (2015). An overview of curriculum-based course timetabling. TOP, 23, 313–349.
4. Bonutti, A., De Cesco, F., Di Gaspero, L., & Schaerf, A. (2012). Benchmarking curriculum-based course timetabling: Formulations, data formats, instances, validation, visualization, and results. Annals of Operations Research, 194(1), 59–70.
5. Bron, C., & Kerbosch, J. (1973). Algorithm 457: Finding all cliques of an undirected graph. Communications of the ACM, 16(9), 575–577.
https://doi.org/10.1145/362342.362367
.