Abstract
AbstractLet $$k\ge 2$$
k
≥
2
be a fixed integer. We consider sums of type $$\sum _{n_1\cdots n_k\le x} F(n_1,\ldots ,n_k)$$
∑
n
1
⋯
n
k
≤
x
F
(
n
1
,
…
,
n
k
)
, taken over the hyperbolic region $$\{(n_1,\ldots ,n_k)\in {\mathbb {N}}^k: n_1\cdots n_k\le x\}$$
{
(
n
1
,
…
,
n
k
)
∈
N
k
:
n
1
⋯
n
k
≤
x
}
, where $$F:{\mathbb {N}}^k\rightarrow {\mathbb {C}}$$
F
:
N
k
→
C
is a given function. In particular, we deduce asymptotic formulas with remainder terms for the hyperbolic summations $$\sum _{n_1\cdots n_k\le x} f((n_1,\ldots ,n_k))$$
∑
n
1
⋯
n
k
≤
x
f
(
(
n
1
,
…
,
n
k
)
)
and $$\sum _{n_1\cdots n_k\le x} f([n_1,\ldots ,n_k])$$
∑
n
1
⋯
n
k
≤
x
f
(
[
n
1
,
…
,
n
k
]
)
, involving the GCD and LCM of the integers $$n_1,\ldots ,n_k$$
n
1
,
…
,
n
k
, where $$f:{\mathbb {N}}\rightarrow {\mathbb {C}}$$
f
:
N
→
C
belongs to certain classes of functions. Some of our results generalize those obtained by the authors (Heyman and Tóth in Results Math 76(1): 22, 2021) for $$k=2$$
k
=
2
.
Publisher
Springer Science and Business Media LLC
Subject
Algebra and Number Theory
Reference22 articles.
1. Bordellès, O.: Arithmetic Tales Universitext, Advanced Springer, New York (2020)
2. Bordellès, O., Tóth, L.: Additive arithmetic functions meet the inclusion-exclusion principle. Lith. Math. J. 62, 150–169 (2022)
3. Cohen, E.: Arithmetical notes. I. On a theorem of van der Corput. Proc. Am. Math. Soc. 12, 214–217 (1961)
4. Heyman, R.: A summation involving the divisor and GCD functions. J. Integer Seq. 23, Article 20.9.8 (2020)
5. Heyman, R., Tóth, L.: On certain sums of arithmetic functions involving the GCD and LCM of two positive integers. Results Math. 76, Paper No. 49 (2021)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献