Abstract
Abstract
Let
$\gcd (n_{1},\ldots ,n_{k})$
denote the greatest common divisor of positive integers
$n_{1},\ldots ,n_{k}$
and let
$\phi $
be the Euler totient function. For any real number
$x>3$
and any integer
$k\geq 2$
, we investigate the asymptotic behaviour of
$\sum _{n_{1}\ldots n_{k}\leq x}\phi (\gcd (n_{1},\ldots ,n_{k})). $
Publisher
Cambridge University Press (CUP)
Reference14 articles.
1. [8] Kiuchi, I. and Saad Eddin, S. , ‘On sums of arithmetic functions involving the greatest common divisor’, Preprint, 2021, arxiv:2102.03714v1.
2. Exponential Sums and the Riemann Zeta Function
3. Exponential Sums and Lattice Points III