Abstract
AbstractLet $$r\ge 1$$
r
≥
1
be an integer and $$\mathbf{U}:=(U_{n})_{n\ge 0} $$
U
:
=
(
U
n
)
n
≥
0
be the Lucas sequence given by $$U_0=0$$
U
0
=
0
, $$U_1=1, $$
U
1
=
1
,
and $$U_{n+2}=rU_{n+1}+U_n$$
U
n
+
2
=
r
U
n
+
1
+
U
n
, for all $$ n\ge 0 $$
n
≥
0
. In this paper, we show that there are no positive integers $$r\ge 3,~x\ne 2,~n\ge 1$$
r
≥
3
,
x
≠
2
,
n
≥
1
such that $$U_n^x+U_{n+1}^x$$
U
n
x
+
U
n
+
1
x
is a member of $$\mathbf{U}$$
U
.
Funder
Austrian Science Fund
University of the Witwatersrand, Johannesburg
Publisher
Springer Science and Business Media LLC
Subject
Algebra and Number Theory
Reference11 articles.
1. Bilu, Yu., Hanrot, G., Voutier, P.M.: Eexistence of primitive divisors of Lucas and Lehmer numbers. With an appendix of M. Mignotte. J. Reine Angew. Math. 539, 75–122 (2001)
2. Bilu, Yu., Komatsu, T., Luca, F., Pizarro-Madariaga, A., Stănică, P.: On a divisibility relation for Lucas sequences. J. Number Theory 163, 1–18 (2016)
3. Carmichael, R.D.: On the numerical factors of the arithmetic forms $$\alpha ^n\pm \beta ^n$$. Ann. of Math. 15, 30–70 (1913)
4. Dujella, A., Pethő, A.: A generalization of a theorem of Baker and Davenport. Quart. J. Math. Oxford 49, 291–306 (1998)
5. Gómez Ruíz, C.A., Luca, F.: An exponential Diophantine equation related to the sum of powers of two consecutive k-generalized Fibonacci numbers. Colloq. Math. 137, 171–188 (2014)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献